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Abstract

In this paper, a low numerical complexity method for parameter estimation of damped exponential signals is proposed. It allows

one to handle with free induction decay (FID) signals of ‘‘high complexity’’ containing hundreds of resonances and composed of

more than 100,000 samples. At first, it is recalled that the model of a FID is a particular autoregressive moving-average (ARMA)

process in which the AR part contains all useful spectral information. Then the AR parameters may be estimated, by solving the

high-order Yule–Walker (HOYW) equations using a singular-value decomposition procedure. To deal with high complexity signals,

a subband decomposition scheme is proposed. The filtering operation involved by the decomposition produces colored noise that

makes the ARMA modeling approach even more essential. Using three real-world 13C NMR signals, the results achieved by the

subband ARMA approach are compared with those obtained using the Fourier transform and a deconvolution algorithm.

� 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

For several years, the possibility of using high-reso-

lution (HR) spectral estimators instead of Fourier
transform (FT) has received considerable attention in

the literature devoted to NMR. Different approaches

have been proposed, including maximum entropy

methods (MEM) [1], linear prediction (LP) methods [2–

6], state space methods [7–9], and more recently the filter

diagonalization method (FDM) [10,11]. Iterative ap-

proaches such as maximum likelihood methods have

also been considered. Here we will limit our discussion
to noniterative algorithms.

Even if rather good results have been reported in

particular cases of signals with a moderate number of

samples and components, natural limitations of these

methods appear when attempting to process very long

signals with large numbers of components. Indeed, in

this case, the algorithms have to handle very large ma-

trices that must be inverted and possible large order

polynomial rooting, resulting in prohibitive calculation
costs and memory capacities requested. With this in

mind, one should consider the following observations.

On the one hand, it is known that in order to achieve

sufficient accuracy and spectral resolution, the number

of parameters has to be chosen much larger than the

actual number of resonances. In the particular case of

LP methods, this over parameterization is partly due to

the AR approximation of the actual model of the FID
which can be shown to be a particular autoregressive

moving-average (ARMA) process. Thus, taking this

structure into account will help to limit the number of

necessary parameters. However, this will obviously not

be sufficient when dealing with FIDs of often more than

100,000 samples and composed of several hundreds of

damped sinusoids. So, on the other hand, in such cases it

would be wiser to perform a subband decomposition
before the estimation process itself [12,13]. This enables

one to transform a complex estimation problem into a
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set of subproblems, each much simpler and more fa-
vorable from a numerical point of view. Moreover, it is

known that such decomposition procedures may en-

hance the performances of the HR spectral estimator

used [14,15].

In this framework, some local spectral analysis

schemes have already been proposed in the NMR lit-

erature [16,17] and this idea still seems to be of interest

in this community [18]. The reduction of calculation
costs has been tackled from other points of view. For

example, some authors proposed the use of fast LP

algorithms [19]. Although such approaches actually

allow one to use huge prediction orders, they are still

inefficient to deal with signals of more than several

thousands of samples. Moreover, the very large poly-

nomial rooting involved in such situations becomes

questionable.
In this paper, we propose an ARMA modeling of the

FID, including a procedure for estimating the AR part

of the ARMA process, used in combination with a

subband decomposition, the latter being achieved by

filtering and decimation operations. Unlike the LP-

ZOOM approach [16], the method proposed performs a

systematic decomposition of the whole spectral band

without a priori information about the peaks location.
Furthermore, the number of subbands being fixed, one

can reasonably admit that each pseudo-FID (which is

much shorter than the original FID), corresponding to

the different subbands, contains fewer resonances so that

the requested model order may be reduced in propor-

tion. Accordingly, the number of roots to be determined

will decrease too. On the whole, considering, say, 100

pseudo-FIDs, each being modeled by an order 100
model, will be roughly equivalent to processing the

original FID with an order 10,000 but will not involve

the same numerical difficulties.

The first part of the paper is devoted to the mod-

eling of a sum of noisy damped sinusoids. It will be

shown that the actual model of such a process can be

viewed as an ARMA model in which all useful spec-

tral information is contained in the AR part. Then a
nonbiased estimator of the AR part, known as the

HOYWSVD estimator [20], is presented. In the second

part, the subband decomposition procedure is set

forth. In particular, it will be shown that the pseudo-

FID resulting from filtering and decimation operations

may also be viewed as an ARMA process that may be

estimated using the same algorithm as before. Finally,

and after a brief summary of the complete method,
the results achieved are compared with those obtained

with a classical procedure. The latter, using a Fourier

transform and a maximum likelihood deconvolution,

will be named FT-MLD. In the case of 13C ex-

perimental signals with more than a 100 components,

the superiority of the approach proposed is pointed

out.

2. Signal modeling and parameter estimation

2.1. Signal modeling

It is well established that the numerical signal yðnÞ
delivered by a spectrometer (generally an average signal

rising from multiple measurements of the same experi-

ment) can be represented by the following model

yðnÞ ¼
XK

i¼1

Aie
ðaiþj2pfiÞnTþjhi þ eðnÞ ¼ xðnÞ þ eðnÞ ð1Þ

for n ¼ 0; . . . ;N � 1. Ai is the amplitude, fi the fre-
quency, ai the damping factor, and hi the phase of each

of the K components. T is the sampling period and N is

the total number of observations. The error term eðnÞ is
representative of measurement noise. It is usually as-

sumed to be white noise. At any rate, the estimator

presented below is able to handle colored noise of MA

type.

The noise-free part of the signal, xðnÞ, admits the
equivalent but more compact representation

xðnÞ ¼
XK
i¼1

hizni ; ð2Þ

where hi ¼ Ai expðjhiÞ and zi ¼ expðai þ j2pfiÞT . It can
be established [21] that xðnÞ can be written in a linear

prediction form

xðnÞ ¼ �
XK
m¼1

aðmÞxðn� mÞ ð3Þ

with að0Þ ¼ 1 and where the parameters aðmÞ are such

that the terms zi from Eq. (2) are the roots of the

polynomial

UðzÞ ¼
XK
m¼0

aðmÞzK�m: ð4Þ

This means in particular that all the frequency infor-

mation of the noise-free signal is included in the aðmÞ
coefficients. Using Eq. (1), one can deduce the following

relation from Eq. (3):

yðnÞ � eðnÞ ¼ �
XK
m¼1

aðmÞðyðn� mÞ � eðn� mÞÞ: ð5Þ

Thus

yðnÞ ¼ �
XK
m¼1

aðmÞyðn� mÞ þ
XK
m¼0

aðmÞeðn� mÞ ð6Þ

which, under the assumption of a white sequence eðnÞ,
resembles an ARMA process. This particular process

has, at first, the same coefficients for the AR and MA

parts. Second, this is an unusual ARMA process be-

cause eðnÞ figures an output noise instead of a driving

noise. In fact, the process is generated by an impulse

input which makes it nonstationary. Thus, it is actually
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a limiting form of an ARMA process. But, what is im-
portant to note is that the autocorrelation function of

the actual process will follow, as will be seen later, the

same recurrence equations as an ARMA process. So,

under certain conditions, it is possible to use the same

estimation procedure as in the classical ARMA case.

The process defined by Eq. (6) will be called the equiv-

alent minimal ARMA representation of signal yðnÞ. This
result is well known [22–24] but, curiously, the use of an
ARMA technique in the estimation procedure has not

received great attention in the NMR literature. In fact,

most of the estimation methods in linear prediction,

more or less, tend to approximate the ARMA process

by an AR one. But for this approximation to hold suf-

ficiently, the prediction order has to be chosen several

times larger than the actual number of poles, thus

leading to an overparameterized problem. Now, it is
known that such an overparameterization is needed for

the LP methods to yield sufficient spectral resolution,

especially at low signal-to-noise ratio (SNR), whatever

model is used. So, considering the actual ARMA

structure permits one to reduce the total number of

parameters to be estimated. Let us recall that the

MA parameters need not be computed, which is

preferable because of the nonlinear aspect of ARMA
identification.

As a more general case, which will be useful in the

discussion about subband modeling, one can also con-

sider the case of colored noise, that is a MA noise se-

quence of order M

eðnÞ ¼
XM
i¼1

cðiÞ�ðn� iÞ; ð7Þ

where �ðnÞ is a white sequence. Now the signal yðnÞ is

described by a minimal ARMAðK;K þMÞ process of

the form

yðnÞ ¼ �
XK
m¼1

aðmÞyðn� mÞ þ
XKþM

m¼0

bðmÞ�ðn� mÞ: ð8Þ

Here again, it must be noticed that the frequency in-

formation of the noiseless signal remains in the AR part

of the ARMA process.

2.2. Nonbiased estimation of the AR part of an ARMA

process

In the previous section, it has been shown that the
problem is now to estimate the AR part of an ARMA

process to get access to frequency information. One

approach to make a nonbiased estimation of solely the

AR part is the so-called high-order Yule–Walker

(HOYW) estimator [20,25], which is strongly related to

another estimator called the overdetermined instru-

mental variable with delayed observations [26]. Because

of its better numerical properties, we finally chose a

particular HOYW estimator, called HOYWSVD due to
the singular-value decomposition (SVD) of the shifted

autocorrelation matrix it involves. This approach is

similar to LPSVD but operates on the autocorrelation

sequence rather than on the data samples. Another no-

table difference lies in the fact that the corresponding

autocorrelation matrix may be shifted to remove the

noise influence, thus leading to an unbiased AR esti-

mation.
The principle of this estimation procedure is now

briefly recalled. Starting with a standard ARMA process

of the form

uðnÞ ¼ �
Xp

m¼1

aðmÞuðn� mÞ þ
Xq

m¼0

bðmÞeðn� mÞ; ð9Þ

it is well known [27] that

rðmÞ ¼ �
Xp

i¼1

aðiÞrðm� iÞ; mP q; ð10Þ

where rðmÞ ¼ E½u�ðnÞuðnþ mÞ� is defined as the auto-

correlation sequence of uðnÞ. Rewriting Eq. (10) for

q6m6 qþ p yields the so-called modified Yule–Walker

equations. In the case where q6m6 qþ c; c > p, the
overdetermined Yule–Walker equation system is ob-

tained. Moreover, if the order p is greater than the ac-

tual order of the AR part, we get the HOYW equations
that have the general form

�RR 	 a ¼ ��rr; ð11Þ

where �RR is a c
 p matrix and �rr a c
 1 vector of auto-

correlations. The vector a contains the AR coefficients.

In the case of process defined by Eqs. (1) and (6), it

can be shown that the autocorrelation function is given

by

rnðmÞ ¼
XK
i¼1

h0iðnÞzmi þ r2dðmÞ; ð12Þ

where h0iðnÞ ¼ hizni
PK

j¼1 h
�
j z

�n
j and r2 is the variance of

eðnÞ. Note that, in this case, the autocorrelation function

is time-dependent but it satisfies a recurrence of the same

form as in Eq. (10) for all time indexes n

rnðmÞ ¼ �
XK
i¼1

aðiÞrnðm� iÞ; m > K: ð13Þ

Clearly, a set of equations similar to Eq. (11) may then

be established:

R 	 a ¼ �r: ð14Þ

Since the autocorrelation sequence is unknown, it has

to be estimated from the FID signal samples. Depending

on the autocorrelation estimator used, the equation

above becomes

R̂R 	 a � �r̂r; ð15Þ
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where

R̂R ¼

r̂rð1; qþ 1Þ r̂rð2; qþ 1Þ . . . r̂rðp; qþ 1Þ
r̂rð1; qþ 2Þ r̂rð2; qþ 2Þ . . . r̂rðp; qþ 2Þ

..

. ..
. ..

.

r̂rð1; qþ cÞ r̂rð2; qþ cÞ 	 	 	 r̂rðp; qþ cÞ

0
BBB@

1
CCCA;

and

r̂r ¼ ½r̂rð0; qþ 1Þ; r̂rð0; qþ 2Þ; . . . ; r̂rð0; qþ cÞ�T:
Here r̂rði; jÞ will correspond to different autocorrelation

estimators, depending on the summation horizon [22].

Integer q must be at least equal to K in the case of white

noise and to K þM in the case of colored noise. Note

that, in practice, oversizing the order p (i.e., p > K) ac-
tually improves resolution [21,22,28]. In the particular

case of narrowband signals, further improvements are

observed if the overdetermination factor c is chosen

large enough (see, e.g., [29]).

Given an estimate of the autocorrelation, the AR

parameters can be computed in the same manner as in

the LPSVD method in which the signal matrix is re-

placed by the autocorrelation matrix. The SVD-based
solution of the HOYW equations is given by

âa ¼ �R̂R#r̂r ¼ �VS#UH :̂rr; ð16Þ
where R̂R ¼ USVH is the singular-value decomposition of

matrix R̂R. The reduced rank Moore–Penrose pseudoin-

verse S# is obtained by inverting the first K̂K largest sin-

gular values and setting the others to zero. Here, K̂K is an

estimation of K, the real number of damped sinusoids.

Once the AR parameters are obtained, frequencies

and damping factors correspond to the imaginary and
real parts of the logarithm of the AR polynomial roots,

respectively. The complex amplitudes may be estimated

by another least-squares procedure using Eq. (1).

Due to the decaying feature of FID signals, the re-

sults obtained by the HOYWSVD technique depend

closely on the choice of the autocorrelation estimator.

From a linear prediction theory point of view, there are

five common estimators called prewindowed, postwin-

dowed, autocorrelation, covariance, and modified covari-

ance estimators [21]. When processing damped

exponentials in reverse time order (or growing expo-

nentials in a normal sense), the postwindowed estimator

is not well-suited because the nonobserved points that

come at the end of the signal are inherently assumed to

be equal to zero. The autocorrelation estimator, which

corresponds to the classical case of the Yule–Walker
equations [27], implies pre- and postwindowing of the

data. For this reason, it is known to yield less resolution,

particularly for short signals, and what is more, it en-

sures the stability of the model, even in backward pre-

diction. Now, it will be seen in the next section that this

property is undesirable. Because it involves forward and

backward prediction, the modified covariance estimator

is better suited to undamped complex exponentials. The

covariance estimator is a quite good candidate but the
prewindowed one is preferred since it operates on more

samples. The prewindowed estimator is given by

r̂rði; jÞ ¼ 1

N

XN
k¼maxði;jÞ

yðk � iÞy�ðk � jÞ: ð17Þ

This estimator implies that the points after the end of
the signal are zero which is in concordance with the

damped feature of the FID, and what is more, it can be

shown to satisfy Eq. (13).

2.3. Estimation of the number of components

At this point, the important question of the estima-

tion of the number of components has not been ad-
dressed. This problem may be seen as a problem of

separation of two subspaces, one being the signal sub-

space and the other the noise subspace. Ideally, K̂K
should be equal to the dimension of the signal subspace,

i.e., the real number of components K. The most com-

mon estimators of the number of components are AIC

and MDL [30,31]. Both estimators work using the SVD

of the autocorrelation matrix and thus do not require
major additional calculations.

We have seen before that, as for the noise-free signal

xðnÞ, the autocorrelation sequence of the noisy signal

yðnÞ could be represented by a linear prediction differ-

ence equation. This is also true for the autocorrelation

sequence of yðnÞ considered in chronological reverse

order, but it must be noted that in this case, the model is

unstable; thus the corresponding poles lie outside the
unit circle. The well-known unit circle criterion (UCC),

which is intended to help to separate the signal poles

from extraneous ones, is based upon this property [32].

In order to preserve it when the estimated autocorrela-

tion is used instead of the true autocorrelation sequence,

autocorrelation estimators that ensure the model sta-

bility must be excluded. Thus, only the covariance and

the prewindowed estimators may be used in our case.
When using HOYWSVD, associated with the prewin-

dowed autocorrelation estimator, with p > K, the p � K
additional zeros of the prediction polynomial tend to

stay inside the unit circle when those associated with the

signal lie outside. We have seen in simulations that if the

number of components is slightly overestimated, UCC

still returns the good number of signal poles (number of

zeros lying outside the unit circle). So, the UCC enables
one to correct possible errors made by the estimator of

the number of components, provided that the latter is

not underestimated.

Note that particular order estimators, well suited to

the HOYW ARMA modeling problem, have been pro-

posed [24,33]. But, for the sake of generality, we only

considered the well-known MDL criterion. Anyhow, it

must be admitted that the estimator of the number of
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components may have poor performances when the
number of spectral lines is too large. Now, the method

we propose later is based on a subband decomposition.

When performing the decomposition, it is possible to

choose the size of subbands so that the corresponding

numbers of components to be processed are limited

enough.

3. A subband decomposition approach

3.1. Introduction and motivations

The concept of subband decomposition, based on an

operation called filtering and decimation (FD), is very

familiar to the members of the signal processing com-

munity who use it in various situations [34]. In the
particular domain of spectral analysis, it has been used

for years in association with the FT in order to produce

a zoom effect on specific spectral bands. It should be

clearly recalled that in this case, no real frequency res-

olution improvement is achieved.

However, since the work of Quirk and Liu [14], it has

been known that such an improvement actually arises

with parametric estimators. Other arguments are in fa-
vor of this approach of spectral analysis, and many

papers have been published on the subject (see, e.g.,

[15,35]). Some of the methods proposed are adaptive

insofar as the decomposition is carried on according to

the spectral contents of the signal under study [36]. Here

we will consider a nonadaptive decomposition scheme.

In the NMR framework, the concept of local spectral

analysis was originally introduced by Tang and Norris
[16]. Since this early work, to our knowledge, this matter

has only seen a few new contributions [17,18,37]. As was

said before, the concept of subband decomposition al-

lows one to generalize the local spectral analysis on the

whole bandwidth. Moreover, it simplifies considerably

the initial estimation problem and thus seems to be well

adapted to the NMR context because of the high com-

plexity of the signals encountered. The spectral decom-
position is achieved by multiple FD operations. But it

will be seen that the filtering involved has a notable

influence on the underlying process modeling.

3.2. Subband decomposition fundamentals

3.2.1. Decimation

We consider only the case of decimation by an integer
d called the decimation factor. The decimated version of

signal sðnÞ is defined as

sdðnÞ ¼ sðdnÞ: ð18Þ
Such an operation may be regarded as a new sampling

of the initial signal. It can be shown [34] that the FT of

sdðnÞ is expressed as

SdðejxÞ ¼
1

d

Xd�1

k¼0

Sðejðx�2pkÞ=dÞ: ð19Þ

This shows that the FT of the decimated signal is a

superposition of d enlarged and shifted versions of the

original FT.

3.2.2. Filtering and decimation

As in all sampling operations, it is necessary to pro-

ceed with a bandpass prefiltering of the signal to be

decimated, in order to avoid aliasing phenomena. More

precisely, the maximal signal’s bandwidth before deci-

mation is Dx ¼ 2p=d. To obtain a complete subband

decomposition of signal sðnÞ, a uniform filter bank may

be used as depicted in Fig. 1.

A filter is defined by its transfer function

GðzÞ ¼
X1
k¼�1

gkz�k; ð20Þ

where the gk are the coefficients of the filter impulse

response. Henceforth, the time-domain relationship be-

tween the filtered and decimated signal f ðnÞ and the

original signal sðnÞ is

f ðnÞ ¼
X1
k¼�1

sðkÞgdn�k ¼
X1
k¼�1

sðdn� kÞgk: ð21Þ

In the structure of Fig. 1, each filter GmðzÞ is a shifted
version of the basic filter G0ðzÞ; the latter will be denoted
GðzÞ for simplicity. Thus, we have

GmðzÞ ¼ Gðze�j2pm=dÞ; m ¼ 1; . . . ; d � 1: ð22Þ
The same result can indeed be achieved by always using
the same lowpass filter but adequately modulating the

initial signal. It is clear that in practice, nonideal filters

have to be used. This results in some problems that are

to be discussed later.

3.3. Modeling of pseudo-FIDs

The question is now to determine the adequate model
for each subsignal or pseudo-FID stemming from the

FD operations. We begin with the original signal yðnÞ

Fig. 1. The overall subband decomposition scheme.
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defined in Eq. (1). At first, the signal is modulated at a
frequency fm ðm ¼ 0; 1; . . . ; d � 1Þ corresponding to the

bandwidth central frequency of the mth filter of transfer

function GmðzÞ
ymðnÞ ¼ yðnÞe�j2pnfm : ð23Þ
As we already mentioned, this enables one to use a
unique low-pass filter GðzÞ. So, we can now, without loss

of generality, consider the special case when fm ¼ 0; i.e.

ymðnÞ ¼ yðnÞ.
Then the signal is filtered with a finite impulse re-

sponse (FIR) filter GðzÞ of order L. The filtered signal,

denoted by y0ðnÞ, is given by the discrete convolution

y0ðnÞ ¼
XL

k¼0

gkyðn� kÞ: ð24Þ

This signal is composed of N � L samples, because the

first L transitory points are suppressed. Using Eqs. (1)
and (2), it follows after straightforward calculation [35]:

y0ðnÞ ¼
XK
i¼1

hiGðziÞzLi zni þ
XL

k¼0

gkeðn� kÞ

¼
XK
i¼1

hiGðziÞzLi zni þ e0ðnÞ: ð25Þ

The effects of the FIR filtering are to scale the complex

amplitudes and to color the noise. In practice, the filter

is indeed nonideal, but it seems reasonable to admit that a
portion K � K 0 of the components, located outside

the filter bandwidth, are sufficiently attenuated to be

assimilated to a supplementary noise term noted v0ðnÞ

y0ðnÞ ¼
XK 0

i¼1

hiGðziÞzLi zni þ
XK

i¼K 0þ1

hiGðziÞzLi zni þ e0ðnÞ

¼
XK 0

i¼1

h0iz
n
i þ v0ðnÞ þ e0ðnÞ; ð26Þ

where

h0i ¼ hiGðziÞzLi : ð27Þ
Now, consider the decimation stage. Starting from

y0ðnÞ, it is possible to obtain a set of different, decimated

series, named polyphasic series

y0d;gðnÞ ¼ y 0ðdnþ gÞ; n ¼ 0; 1; . . . ;N 0

g ¼ 0; 1; . . . ; d � 1;

	
ð28Þ

where N 0 ¼ ½ðN � LÞ=d� represents the length of the

decimated series (½x� stands for the integer part of x). In
this paper we make use of only the first series, that is for

g ¼ 0.

Finally, the filtered and decimated signal (pseudo-

FID) can be written

y0dðnÞ ¼
XK 0

i¼1

h0iz
0n
i þ v0dðnÞ þ e0dðnÞ; ð29Þ

where v0dðnÞ ¼ v0ðdnÞ, e0dðnÞ ¼ e0ðdnÞ and
z0i ¼ zdi : ð30Þ
For reasons that have been exposed in [35], under cer-

tain conditions, the term v0dðnÞ and the bias it could in-

troduce may be neglected. This is generally true if the

filter transition band is sharp enough. Now, our model
of the pseudo-FID reduces to

y0dðnÞ ¼
XK 0

i¼1

h0iz
0n
i þ e0dðnÞ: ð31Þ

Since e0dðnÞ is a resampled version of the MAðLÞ process
e0ðnÞ, it can be shown that e0dðnÞ is a MA(½L=d�) process
[38]. Now, the signal y 0dðnÞ is a superposition of K 0

weighted complex exponentials and of the MA noise

e0dðnÞ. Thus, y 0dðnÞ can be seen as a minimal ARMA

ðK 0;K 0 þ ½L=d�Þ process. Whenever the initial noise is a

MAðMÞ process, then e0dðnÞ is a MAð½ðLþMÞ=d�Þ pro-
cess. It is important to note that if more than one FD

stage are needed, the additive noise is no longer white;

this makes the AR-based estimators even more inade-

quate. Since the pseudo-FID is of the same type of that

of Eq. (1), the HOYWSVD approach is still valid to

estimate the frequencies via the AR parameters.

3.4. The decimation filter

As was pointed out before, the filter considered is a

FIR one. Infinite impulse response (IIR) filters have not

been retained for different reasons, among which include

stability problems when small bandwidths are needed.

The choice of a particular FIR filter seems not to be of

crucial importance. A typical low-pass filter has two

important features: the cut-off frequency xp and the
stopband frequency xs. To avoid aliasing due to deci-

mation, xs must verify the inequality

xs 6 p=d: ð32Þ
The filter being nonideal, the signal peaks located inside

the transition band ½xp;xs� may be severely reduced;

moreover, their variance is undoubtedly greater than for

the peaks inside the bandpass. To overcome this prob-

lem, the signal poles estimated in the transition band

should be eliminated, thus leading to the successive fil-
ters overlapping, as shown in Fig. 2, to retrieve all

spectral information. This results in making the initial

number of subbands increase from d to d 0. As a conse-

quence, the bandpass of the filter is now defined as

xp ¼ p=d 0, where d 0 is greater than d. For simplicity, one

can choose d 0 ¼ 2d, so

xp ¼ p=2d;

xp < xs 6 p=d:
ð33Þ

It must be mentioned that for high values of the decima-

tion factor d, the filter involves several hundreds of
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coefficients, resulting in prohibitive filtering durations. In

that particular case, an interpolated finite impulse re-

sponse (IFIR) approach may be advantageously carried

out [34].Briefly, it consists in replacing theone-stepFDðdÞ
operation by successive FDðdiÞ stages, where d ¼ Pidi

and the filters involved aremuchmore simple. This allows

one to drastically reduce the number of calculations.

3.5. The complete method (SB-HOYWSVD)

The method proposed may be briefly summarized as

follows.

1. Choose factor d (which depends on the number of

data samples and the complexity of the signal); then

deduce the features of the filter using Eqs. (33).

2. Fix the operating parameter p; then put
q � p þ ½L=d�. The parameter c should be at least

equal to p.

3. For m ¼ 0; 1; . . . ; d 0 � 1, repeat the following:

(a) Generate a pseudo-FID by modulating the

original signal (Eq. (23)) followed by a low-pass

filtering and decimation.

(b) Reverse the chronological order of the pseudo-

FID; then perform a HOYWSYD estimation of
the forward prediction coefficients using Eq. (16).

(c) Perform a polynomial rooting of the forward

prediction polynomial to find the signal poles; then

select those lying outside the unit circle and reflect

them inside to get the ẑz0i’s.
(d) Compute the subband complex amplitudes ĥh0i.
(e) Discard all poles outside the filter’s bandpass.

4. Obtain the different fullband parameters ðhi; ziÞ from
the subband parameters (h0i and z0i) using Eqs. (30)

and (27).

Note that the frequencies, damping factors, amplitudes,

and phases can be obtained directly from the parameters

zi and hi.

4. Experimental results

In this section, some results obtained on experimental

NMR signals are presented to demonstrate the useful-

ness of the subband ARMA estimation method. The

results are compared to those obtained by a classical

method (FT-MLD) and the ARMA estimation per-

formed in the fullband (HOYWSYD). The FT-MLD

method associates a classical FT approach with a max-

imum likelihood deconvolution (MLD) algorithm [39].

Here, this approach is used in the best possible condi-

tions; that is, it makes use of the entire signal and,

during the deconvolution process, the exact number of

components K (which is perfectly known) is used.
Hence, the FT-MLD algorithm is considered as the

reference method for our trials. Note that K being

known, the use of adapted thresholds allowed us to in-

sist on the presence of some lines and to eliminate all

supplementary ones, which is generally not possible in

practice.

Three experimental signals, named NMRi ði ¼ 1;
2; 3Þ, are used. All of them were recorded on a Brucker
AM 400 spectrometer (13C frequency observation:

100.62MHz). The signals are real of length 131,072

samples and were obtained using 1000 accumulations.

Their chemical compositions are shown in Table 1. The

first signal is of a low spectral complexity: it contains

only nine, relatively spaced, components. The signals

NMR2 and NMR3 whose absorption spectra are shown

in Fig. 3 are more intricate because they contain many
more components, generally very close one to the other

(especially NMR3 signal).

For the subband approach, the decimation factor to

be used depends on the problem complexity (number of

components) and on the number of samples. Here, it

was fixed to ensure good operating conditions, that is to

have at once pseudo-FIDs of reasonable length and a

sufficient reduction of the number of parameters that
have to be estimated simultaneously. For example, if we

chose to have 1000 samples of pseudo-FIDs, the deci-

mation factor has to be fixed to d ¼ 128 (and d 0 ¼ 256Þ.
This tuning has been retained for all the trials presented

below. The decimation filter is then designed using the

IFIR approach, which results in actually operating five

Kaiser filters of respective orders 16, 17, 10, 12, 39 and

successive decimation stages with decimation factors of
4, 4, 2, 2, 2. With these parameters, each subsignal

contains N 0 ¼ 1001 data samples. Since the number of

components lying in a particular subband is not known,

it is estimated using the MDL criterion.

Fig. 2. (a) Decimation filter; (b) overlapping decimation filters for d ¼ 4 ðxp ¼ p=8 and xp < xs 6p=4Þ. Four subbands in the frequency interval

½0;p� result from the decomposition.
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4.1. First experimental signal: NMR1

The first signal NMR1 comes from experiments made

on a solution of ethylbenzene in deuterated chloroform

CDCl3 (1M/l). It containsnine components in thepositive

frequency interval ½0; p=2�. The time between consecutive

pulses was set to 1 s. With this signal, the principal diffi-

culty (although it is of little interest) is to resolve the three

central peaks between 0.25 and 0.3Hz (lines 5, 6, and 7 of

Table 2) due to the presence of chloroform.

The results achieved on the signal using the HO-

YWSVD technique (i.e., in the fullband) are shown in

Table 1

Chemical compositions corresponding to signals NMR1-3

Signal Products Formulae Quantity (g)

NMRl Ethylbenzene C8H10 —

Chloroform CDCl3 —

NMR2 Benzene C6H6 0.0362

Ethylbenzene C8H10 0.2818

Toluene C7H8 0.5195

1,3-Dimethylbenzene C8H10 0.2449

1,3-Dimethyl-5-ethylbenzene C8H14 0.4002

Chloroform CDCl3 —

NMR3 Toluene C7H8 0.5322

meta-Ethyltoluene C9H12 0.3395

Ethylbenzene C8H10 0.3931

o-Xylene C8H10 0.2986

1,3-Dimethyl-5-ethylbenzene C10H14 0.2651

m-Xylene C8H10 0.3089

Tetraline C10H12 0.3312

Indane C9H10 0.2893

n-Propylbenzene C9H12 0.1593

p-Xylene C8H10 0.1208

1,2-Dimethyl-3-ethylbenzene C10H14 0.1150

1,3,5-Trimethylbenzene C9H12 0.0806

Naphthalene C10H8 0.0188

1,2,3-Trimethylbenzene C9H12 0.0488

Isobutylbenzene C10H14 0.0132

Benzene C6H6 0.0765

2,4-Dimethylhexane C8H18 0.1012

2,3,4-Trimethylpentane C8H18 0.1489

TMS C4H12Si —

Dioxane C4H8O2 —

Chloroform CDCl3 —

Fig. 3. Absorption spectra of experimental signals: (a) NMR2 and (b) NMR3.
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Table 2. Due to hardware limitations, only 8192 samples

of the 131,072 are used. After some tests, the parameters

p; q, and c are set to 300, 400, and 800, respectively. The

truncation number K ¼ 18 is assumed to be known.With

these parameters, eight of the nine theoretical compo-

nents are detected, while line 6 failed to be detected.

With the subband technique using much lower

ARMA orders ðp ¼ 10, q ¼ 30, c ¼ 80Þ, all the compo-
nents have been detected, although their number was

unknown. Note that the decimation factor used for this

example is high regarding the spectral content of the

signal. As a matter of fact, comparable results may be

achieved with d ¼ 32. Concerning the amplitude esti-

mation, it can be seen that the results are rather poor

with the HOYWSVD approach while the amplitudes

estimated by FT-MLD and SB-HOYWSVD are com-
parable. It may be noted that the amplitude of line 5 is

overestimated by HOYWSVD, due to the missing line 6.

Indeed, this amplitude corresponds roughly to the sum

of the amplitudes of lines 5 and 6. Calculation times

were observed to be of 30 s for HOYWSVD (on 8192

samples) and 1min 23 s for SB-HOYWSVD (on the

whole signal) on a 800MHz PC and under a Matlab

environment. Note that in the case of SB-HOYWSVD,
filtering time was 1min.

4.2. Second experimental signal: NMR2

The second experimental signal NMR2 corresponds

to a more intricate situation, that is a mixture of five

compounds with known concentrations CDCl3. The

quantitative recording is based on the addition of a

relaxation agent that shortens the longitudinal relax-

ation time T1; the time between consecutive pulses was

therefore set to 35 s. There are 28 spectral lines, some

of them being extremely mixed up and thus overlap-

ping. We focus our attention on this particular zone,

named NMR2A, around relative frequency 0.143Hz.
The operating parameters p, q, and c of the HO-

YWSVD method are set to 600, 600, and 800, respec-

tively. The algorithm makes use of only the first 8128

samples. As for signal NMR1, the truncation number

is set to the theoretical number of components (i.e.,

K ¼ 56Þ. Despite this, this method fails to detect 14

components and finds only one peak among 5 in

NMR2A. In contrast, the same method applied in
subband with p ¼ 30, q ¼ 50, c ¼ 120 succeeds in de-

tecting all of the spectral lines with estimated ampli-

tudes approximately equal to those obtained by the

FT-MLD method. See Table 3 for the results achieved

on NMR2A zone.

Here we see that in a situation of average com-

plexity, the HOYWSVD method requires large model

orders and, when this is not true, it fails to detect
all the components. On the other hand, the SB-

HOYWSVD method detects all the components with

relatively low model orders. The HOYWSVD took

1min 30 s in order to process the first 8192 samples

while SB-HOYWSVD dealt with the 128k samples in

1min 41 s.

Table 3

Results achieved on signal NMR2 in the NMR2A zone

Line FT-MLD HOYWSVD SB-HOYWSVD

f A f A f A

. . . . . . . . . . . . . . . . . . . . .

8 0.14259 0.032 — — 0.14260 0.028

9 0.14268 0.055 — — 0.14269 0.066

10 0.14285 0.115 — — 0.14287 0.136

11 0.14307 0.024 — — 0.14308 0.027

12 0.14385 0.051 0.14392 0.147 0.14386 0.063

. . . . . . . . . . . . . . . . . . . . .

Table 2

Results achieved on signal NMR1

Line FT-MLD HOYWSVD SB-HOYWSVD

f A f A f A

1 0.10269 0.120 0.10269 0.093 0.10269 0.119

2 0.14276 1.000 0.14276 1.000 0.14277 1.000

3 0.14391 0.950 0.14390 0.792 0.14391 0.948

4 0.14960 0.548 0.14960 0.483 0.14961 0.476

5 0.27099 0.197 0.27093 0.354 0.27099 0.179

6 0.27178 0.204 — — 0.27179 0.185

7 0.27258 0.206 0.27278 0.140 0.27259 0.194

8 0.39283 0.612 0.39283 0.398 0.39283 0.559

9 0.42627 0.784 0.42627 0.504 0.42628 0.648

94 M. Tomczak, E.-H. Djermoune / Journal of Magnetic Resonance 158 (2002) 86–98



4.3. Third experimental signal: NMR3

The signal NMR3 results from quantitative experi-

ments on a synthesized mixture of 19 compounds in

CDCl3, with tetramethylsilane (TMS) as the internal ref-

erence. Hence the complete chemical composition and the

chemical shifts (d/TMS) of the lines of the individual

products are known. Some of them are shown in Table 4.

Toluene being the most concentrated compound, two
lines corresponding to the equivalent carbons, C6–C2

(32nd line) and C3–C5 (38th line), have the maximal in-

tensity. The latter is therefore set to 100% and, from the

theoretical composition, the intensities of the other lines

are expressed as a percentage of these reference lines. The

deconvolution is done with K ¼ 104 a priori known,

which, of course, is an advantage. For this example, the

Table 4

Results achieved in subbands 27, 37, 39, and 70 of signal NMR3

Band Line Theoreticala FT-MLDb SB-HOYWSVDc

J L d (ppm) I (%) f A (%) f A (%)

. . . . . . . . . . . . . . . . . . . . . . . .

6 144.26 32.05 0.10277 32.87 0.10277 34.87

27 7 144.23 24.45 0.10286 46.39 0.10286 44.31

8 144.22 17.10 — — — —

9 144.06 42.38 0.10303 41.28 0.10303 40.92

. . . . . . . . . . . . . . . . . . . . . . . .
31 129.11 43.37 0.14073 42.02 0.14073 41.88

32 129.06 100.00 0.14092 100.00 0.14092 100.00

33 128.94 39.40 0.14124 40.16 0.14124 44.53

34 128.72 24.45 0.14181 25.25 0.14181 25.99

35 128.47 22.98 0.14239 21.27 0.14239 20.57

36 128.37 50.86 0.14267 51.20 0.14266 52.06

37 37 128.31 64.11 0.14275 66.86 0.14275 61.54

38 128.25 100.00 0.14293 65.22 0.14293 94.19

39 128.23 22.98 0.14297 75.81 0.14296 34.53

40 128.23 24.45 0.14301 12.94 0.14301 29.07

41 128.15 25.19 0.14315 23.62 0.14315 25.92

42 128.07 1.70 — — — —

43 127.88 5.08 0.14382 8.24 0.14381 7.46

44 127.86 64.11 0.14392 64.67 0.14392 64.41

. . . . . . . . . . . . . . . . . . . . . . . .

50 126.06 50.38 0.14848 48.29 0.14848 47.19

51 126.03 7.42 0.14851 19.03 0.14851 27.34

52 125.95 42.38 0.14861 41.50 0.14861 44.22

53 125.81 5.08 0.14902 6.43 0.14903 2.01

54 125.80 48.70 0.14907 48.10 0.14906 55.16

55 125.72 34.20 0.14931 33.63 0.14931 33.47

39 56 125.63 11.49 — — — —

57 125.62 0.85 — — — —

58 125.59 32.05 0.14958 48.34 0.14958 50.67

59 125.45 7.42 0.14996 6.64 0.14996 8.30

60 125.38 43.37 0.15006 39.10 0.15006 38.66

61 125.33 50.00 0.15028 48.13 0.15028 49.36

62 125.23 3.52 — — 0.15052 3.62

63 124.85 24.45 0.15146 24.60 0.15146 25.78

. . . . . . . . . . . . . . . . . . . . . . . .

72 0.27026 1.02

73 77.30 0.27064 1923.5 0.27063 2012.26

70 74 0.27086 10.77

75 77.00 0.27143 1914.9 0.27143 2003.53

76 0.27151 11.99

77 76.70 0.27223 1961.9 0.27223 2038.43

. . . . . . . . . . . . . . . . . . . . . . . .
a Theoretical lines with corresponding chemical component, chemical shifting (in ppm), and relative intensity (%) with respect to toluene’s 32nd line

(denoted by L32).
bResults of the FT-MLD approach: estimated normalized frequencies and estimated relative intensities (directly calculated from estimated

amplitudes).
cResults achieved by the SB-HOYWSVD method.
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HOYWSVDmethods has not been considered because of

its great lack of performance. The parameters of the SB-

HOYWSVD approach are p ¼ 80, q ¼ 100, c ¼ 160. The

results obtained by the two methods, FT-MLD and SB-

HOYWSVD, are compared in Table 4 together with the
theoretical line spectrum. Some subbands (numbered by

J) J ¼ 27; 37; 39, and 70 are depicted in Fig. 4. Each

subfigure shows the FT absorption spectrum together

with the line spectrum estimated by SB-HOYWSVD.

With the aforementioned parameters, the SB-HO-

YWSVD method detects 118 lines among which 94

correspond to actual theoretical lines, and 24 seem to

have no theoretical correspondent. Ten theoretical lines
are not detected. The FT-MLD made only 93 good

detections and missed 11 theoretical lines, despite the

use of the correct number of components.

Concerning the 10 lines not retrieved by the subband

approach, two different situations may be distinguished:

nondetection of eight peaks with very small amplitudes

ð<2%Þ, and nonseparation of two lines, L8 and L56, in

bands 27 and 39, respectively. In the first case, the
products involved are in very small quantity, and the

corresponding peaks are almost invisible in the FT

absorption spectrum (that is the case, for example, for

lines L42 and L57). In the second case, two different

products have almost the same resonance frequency (see

Fig. 4), and thus could not be separated by any method.

It may be noted that when two close peaks are not re-
solved, the intensity of the resulting peak corresponds

roughly to the sum of the intensities of the theoretical

lines (e.g., lines 7 and 8 in Table 4).

Concerning the 24 false detections, some explanations

may be given. At first, 15 estimated lines are of ex-

tremely small amplitude ð<1%Þ, so that they may pos-

sibly be eliminated using an adequate threshold. Five of

the 24 ‘‘false’’ lines, although having theoretically no
existence, appear in the FT absorption spectrum. So it is

possible that these lines correspond to impurities in the

mixture considered. The last four false lines are actually

artifacts caused by a bad estimation of the theoretical

rank. This kind of phenomenon often occurs in the vi-

cinity of lines with strong intensities. Fig. 4d shows three

false lines estimated close to the resonant frequencies of

the solvant.
The SB-HOYWSVD algorithm detected one line that

was missed by the deconvolution ðL62 on Table 4 and

Fig. 4. Results achieved on some subbands of signal NMR3. Arrows point out nondetected components in subbands 27 (a), 37 (b), 39 (c), and

spurious ones in subband 70 (d). The star indicates what line is detected by SB-HOYWSVD and missed by FT-MLD.
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Fig. 4). On the contrary, no lines detected by FT-MLD
have been forgotten by the subband approach. It can be

seen, for example, in Fig. 4b (band 37) that, around

frequency 0.143, there are actually three components

that are very close and overlapping. In such a situation,

the deconvolution process is not easy and the ampli-

tudes of the three peaks are badly estimated, while the

proposed method performs much better (see Table 4).

Note that the precision of frequency estimates is quite
irreproachable. Concerning more particularly amplitude

estimation, the mean relative errors observed with the

two methods are comparable. Note the important errors

made by the deconvolution method in the case of lines

L38, L39, and L40, when the SB-HOYWSVD method

keeps a more reasonable behaviour. Calculation time

was 3min 13 s under the same conditions as before. It

must be mentioned that, in general, it is possible to in-
crease the number of correctly detected lines by using

greater model orders, but this can lead to unacceptable

false detection rates. For instance, with appropriate

model orders, the method is able to detect 97 of the 104

lines but with a total of 138 detected lines.

5. Conclusion

The approach proposed in this paper increases con-

siderably the applicability of LP-based methods. It al-

lows one to process long FIDs made up of great

numbers of damped sinusoids, with low model orders

and thus with reduced complexity, although it makes

use of the complete signal. Thus, the processing of FIDs

of 128k samples takes no more than 3 or 4min on a
standard PC and under a Matlab environment. When

compared to FT approaches, it has theoretical advan-

tages because of its better statistical properties. The

modeling process accounts for the presence of noise and,

thanks to the subband decomposition, the estimation

variance is maintained at a reasonable level. This allows,

better performances at low SNR to be expected; thus it

would be possible to reduce the number of accumula-
tions. Moreover, when dealing with intricate spectra,

our trials show that it performs comparably to a clas-

sical FT-MLD procedure in terms of frequency and

amplitude estimates. But recall that, in practice, the

deconvolution procedure requires the number of peaks

to be chosen a priori. Here, the FT-MLD algorithm was

used with the assumption of a perfectly known number

of components. On the contrary, our approach is single-
step, neither deconvolution nor numerical integration is

necessary and the four parameters are given directly. In

addition, its resolution capabilities are superior; thus it

is able to increase the number of correctly detected lines.

Note that the resolution capabilities depend strongly on

the damping factor involved. It seems reasonable to

expect a notable gain, comparatively to the FT, in the

case of low damping factors. However, this improve-
ment is sometimes achieved at the expense of a greater

false detection rate. Fortunately, most of the false peaks

may be suppressed with the help of an adapted thresh-

old. This problem of false detections, which is related to

the limited performances of the classical estimators of

the number of components, may also be partly over-

come by considering adaptive decomposition schemes.
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